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Abstract

We generalize to the supersymmetric case the representation of the KP hierarchy as a set of
conservation laws for the generating series of the conserved densities. We show that the hier-
archy so obtained is isomorphic to the JSKP of Mulase and Rabin. We identify its “bosonic
content” with the so-called Darboux–KP hierarchy, which geometrically encompasses the theory
of Darboux–Bäcklund transformations, and is an extension both of the KP theory and of the modi-
fied KP theory. Finally, we show how the hierarchy can be linearized and how the supersymmetric
counterpart of a wide class of rational solutions can be quite explicitly worked out. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Supersymmetric extensions of integrable hierarchies of PDEs are by now a well-studied
subject (see, e.g., [17,19–21,25,26,30,32]). In particular, for the KP equations, two different
extensions have emerged: theManin–RadulSKP [25] (MRSKP), and theJacobianSKP
of Mulase and Rabin [30,31] (JSKP). The most remarkable and best known differences
between the two hierarchies are the fact that the flows of MRSKP are a representation
of a super Heisenberg algebra, while those of JSKP are supercommuting ones, and the
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behavior of their algebro-geometric solutions. Indeed, the JSKP describes linear flows on
the (super) Jacobian manifold of a super algebraic curveĈ, while the MRSKP flows involve,
in general, a motion on the space of moduli ofĈ. Actually, the latter is perhaps the strongest
motivation that led Mulase and Rabin to modify the (previously discovered) Manin–Radul
supersymmetric extension of the KP hierarchy.

From the point of view of the present paper, there is another more relevant difference be-
tween the two approaches: the Manin–Radul theory concerns the supersymmetric extension
of theLax representation:

∂L

∂tk
= [(Lk)+, L] (1.1)

of the KP hierarchy on the space of pseudo-differential operators in one dimension. In the
approach of Mulase and Rabin, one starts instead from theSato representationof the KP
equations on the Volterra group of dressing operators,

∂S

∂tk
= −(S∂kxS−1)−S, (1.2)

whereS andL are related by the well-known dressing formula

L = S∂xS
−1. (1.3)

This paper is based on the representation of the KP theory as a set of conservation
laws [39], which has been recently studied [10] as an outgrowth of the application of the
Gel’fand–Zakharevich theorem [13] to infinite dimensional integrable systems. That is, the
KP equations are written as the conservation laws

∂h

∂tk
= ∂xH

(k), (1.4)

where

h = z+
∞∑
l=1

hl

zl
(1.5)

is the generating series of the conserved densities of the KP theory, andH(k) are their
current densities. These currents are written as suitable linear combinations of the Faà di
Bruno monomials

h(k) = (∂x + h)k · 1 (1.6)

associated withh.
The supersymmetric extension of Eq. (1.4) will be written as

∂ĥ

∂tα
= (−1)αδĤ (α), (1.7)

and called Hamiltonian super KP hierarchy (HSKP). Hereδ = ∂ϕ + ϕ∂x is the square root
on the super-circleS1|1 of thex-derivative∂x , well known from string and superconformal
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field theories (see, e.g., [12]), the odd superfieldĥ replaces the generatorh of the local
Hamiltonian densities, and̂H(α) are suitable supersymmetric extensions of the currents
H(j). In the first part of the paper we show that, as it happens in the ordinary case, Eq. (1.7)
admits a representation-extension to a family of dynamical systems withN

2 ×N2 variables
(of which half are even and half are odd), to be called thesuper central system(SCS).
It is a counterpart of the Sato system on the infinite-dimensional Grassmann manifold
[7,28,33,35,37], and the super KP equation (1.7) can be considered as a kind of “reduction”
of SCS. Then we show how the hierarchy (1.7) can be identified, by means of a non-trivial
coordinate change, with the JSKP hierarchy.

This is, however, only the first topic we want to discuss in this paper. The second
one concerns the relation of the HSKP hierarchy with the theory of Darboux transfor-
mations. The fact that supersymmetry has an intriguing relation with the theory of Dar-
boux transformations is a well established one. For instance, the classical problem of
factorizing the Schrödinger operator−∂2

x + u(x) into first order factors gives rise to a
super algebra (see [27], Section 2, and references quoted therein). Another signal of this
fact comes from Mulase’s paper [29], where it was shown how the modified KP equa-
tion can be obtained from the MRSKP by means of a process of elimination of odd
variables.

We shall show that HSKP provides a natural framework to discuss such issues. We
shall use the geometrical setting of [22], where the classical subject of Darboux–Bäcklund
transformations and Miura-like maps is approached in a rather unconventional way that can
be summarized as follows. Instead of searching directly for a symmetry of an evolutionary
equationX defined on a manifoldM, one tries to find acovering, i.e., another evolutionary
equation, defined on a bigger manifoldN , related toX by two mapsπ, σ : N → M, such
that

X = π∗Y = σ∗Y. (1.8)

In [22], a covering for the KP hierarchy, called Darboux–KP (DKP) hierarchy, was con-
structed as a hierarchy defined on the phase-space of pairs of Laurent series(h, a) with
suitable asymptotics and the (generalized) Miura transformation was defined to beh 7→
σ(a, h) = h+ax/a. Another application of this formalism has been used in [10] to linearize
the equations (the so-calledcentral system(CS)) induced by the flows (1.4) on the currents
H(j). This method has been exploited (see [11]) to construct a wide class of solutions of
KP admitting a polynomialτ -function.

In this paper we will consider the supersymmetric counterpart of the geometric theory
of the Darboux transformations. Firstly, we will show that the DKP system is actually the
bosonic content of the even flows of HSKP (and hence of JSKP). Then we will construct
a Darboux covering for HSKP and related “rational” reductions. Finally, we will use the
technique of Darboux covering to linearize the Super analogue SCS of CS, exploiting this
result in a quite explicit description of a wide class of non-trivial solutions of HSKP of
rational type.

The detailed plan of the paper is the following. In Section 2, after having briefly recalled
the basis of the (bi)Hamiltonian set up for the KP theory, we will introduce the phase
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space for HSKP and define the hierarchy. In Section 2.2, we will discuss the fundamental
properties of HSKP, and we will introduce the SCS as the dynamical system obeyed by
the currents of the theory when the Faà di Bruno generatorĥ evolves along HSKP. In
Section 2.3, we will show how solutions of HSKP can be obtained from solutions of SCS,
and in Section 2.4, we will briefly discuss how HSKP can be seen as a particular form
of the Jacobian SKP hierarchy of Mulase and Rabin, by comparing the wave functions
associated with the two theories. In Section 2.5, we will show how a super extension
of the KdV equation can be obtained as a suitable reduction of HSKP; this will give us
a concrete clue to the rest of the paper. Indeed, from Section 3 onwards we will turn
our attention to the method of Darboux coverings. We will first recall the setting of the
ordinary bosonic case, and then identify the bosonic part of HSKP with the DKP hierarchy
of [22]. We will also point out the specific form of the generalized Miura transformation.
Furthermore, we will construct a Darboux covering of HSKP, and briefly discuss some
reductions of the latter. Finally, in Section 4, we will show how the equations can be explicitly
linearized, and discuss a specific class of solutions depending rationally on a finite number of
times.

2. The GZ approach to KP and its supersymmetric extension

The technique that plays a prominent role in the bi-Hamiltonian approach to KP is the
Gel’fand Zakharevich method [13] of Poisson pencils to construct integrable Hamiltonian
systems. In such a scheme one considers a manifoldM endowed with a pencilPλ = P1−λP0

of Poisson structures, and studies theCasimir functionsof the pencil. Such a Casimir
functionHλ is a (non-constant) function onM, which depends also on the parameterλ,
such thatPλ dHλ = 0 for every value ofλ. WhenM is an(2n+ 1)-dimensional manifold
endowed with a Poisson pencil of maximal rank,Pλ has a unique Casimir functionHλ,
which is a polynomial inλ of degreen,

Hλ = H0λ
n +H1λ

n−1 + · · · +Hn.

Its leading coefficientH0 is the Casimir ofP0, while the “constant term”Hn is the Casimir
of P1. The coefficientsHj satisfy the recurrence relations

P1 dHj+1 = P0 dHj

and therefore are in involution with respect to all the brackets of the pencil.
In the realm of infinite-dimensional systems, the KdV theory is perhaps the best known

prototype of a GZ hierarchy [6,14]. Here, the manifoldM is the space ofC∞ functions on
the circleS1, and the Poisson pencil, given as a one-parameter family of skew-symmetric
maps from the cotangent to the tangent bundle, reads

u̇ = (Pλ)uv = −1
2vxxx + 2(u+ λ)vx + uxv,

wherex is a coordinate onS1, u represents a point ofM, andu̇ andv are, respectively, a
vector and a covector atu. It turns out [10] that ifh andv are series inz = √

λ of the form
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h(z) = z+
∑
j>0

hj z
−j , v = 1 +

∑
l>0

vl

z2l
(2.1)

that provide the unique solutions of the Riccati system

hx + h2 = u+ z2, −1
2vx + hv = z,

thenv(z) is the series representing the differential of the Casimir function of the Poisson
pencil of KdV, which, in turn, is given by the integral

Hλ = 2z
∫
S1
hdx. (2.2)

The GZ hierarchy associated withHλ onM admits several representations. The one we are
interested in can be expressed by saying that the local Hamiltonian densityh(z)must obey
local conservation laws of the form

∂

∂tj
h = ∂xH

(j),

where the “current densities”H(j) are given by

H(2j) = λj and H(2j+1) = −1
2(λ

j v)+,x + h(λjv)+, (2.3)

the subscript+ meaning to take the positive part of the expansion in powers ofz. Eq. (2.3)
can also be written as

H(2j+1) = z2j (−1
2vx + hv)+ 1

2(z
2j v)−,x − h(z2j v)−

or

H(2j+1) =
j∑
l=1

[−1
2vj−l,x(z

2l · 1)+ vj−l (z2l · h)].

The first of these two expressions shows thatH(j) = zj + O(z−1), since by the second
Riccati equation above we havez2j (−1

2vx + hv) = z2j+1. The interpretation of the second
entails that the currentsH(j) are the unique combinations

H(j) =
j∑
k=0

c
j
k h

(k)

of the Faà di Bruno iteratesh(j) of h(0) = 1 ath, defined by

h(j+1) = (∂x + h)h(j), (2.4)

that admit the asymptotic expansionH(j) = zj + O(z−1).
The relevance of this result is that the currentsH(j) can be constructed without requiring

thath is a solution of the Riccati equation. Therefore one can define the KP hierarchy as
follows.
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Definition 2.1. Let h be a monic (formal) Laurent series inz−1

h := z+
∑
j>0

hj z
−j ,

whose coefficientshj belong toC∞(S1), and consider its Faà di Bruno iteratesh(j). Denote
byW the span overC∞(S1) of the order Faà di Bruno iterates (or monomials)

W := spanC∞(S1){h(k), k ≥ 0}
and introduce the “current densities”H(k) by requiring them to be the unique elements of
W of the form

H(k) = zk +
∑
j>0

Hk
j z

−j .

The KP hierarchy is defined to be the set of conservation laws

∂

∂tk
h = ∂xH

(k). (2.5)

We observe thatH(1) = h, so we can identify the first timet1 with x. Moreover, it can be
proven that this definition is completely equivalent to the one given in the framework of
pseudo-differential operators (see, e.g., [8] and references quoted therein).

We end this review of the bi-Hamiltonian set up of the KP hierarchy with the notion of
the Central System (CS). The operators∂tk +H(k) satisfy the invariance condition

(∂tk +H(k))W ⊂ W

and the commutativity property [∂tk +H(k), ∂tj +H(j)] = 0. This entails that along the KP
flows (2.5) the currentsH(k) satisfy the following evolutionary equation:

∂

∂tj
H (k) +H(j)H (k) = H(j+k) +

k∑
l=1

H
j
l H

(k−l) +
j∑
l=1

Hk
l H

(j−l). (2.6)

Definition 2.2. Let H be the space of sequences{H(0), H (1), H (2), H (3), . . . }, where
H(0) = 1 and theH(j)’s are of the form:

H(j) = zj +
∑
l≥1

H
j
l

zl
, j ≥ 1.

The CS is the hierarchy of dynamical system onH defined by Eq. (2.6). It turns out that the
vector fields of CS commute among themselves [4].

In the next section we define the extension to the (N = 1) supersymmetric case of
the constructions here-in outlined. This will lead us to the definition of a supersymmetric
extension of the KP hierarchy. We will refer to such an SKP theory as HSKP, to keep track of
its (albeit remote) Hamiltonian origins. Later (see Section 2.4) we will show how to identify
our HSKP with the Jacobian super KP hierarchy of Mulase and Rabin [2,30,32,36].
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2.1. The definition of the HSKP hierarchy

Let us start by fixing some notations (see, e.g., [24] for more details on supergeometry),
to be used throughout the paper. We denote by3, a generic Grassmann algebra overC.
This is required by functorial properties of supersymmetry [34], but in this work it will
play a spectator role, and can be thought of as a fixed algebra. We supplement the bosonic
spectral parameterz with its fermionic “super-partner”θ , and replace the circle by its super
analogS1|1 endowed with coordinatesx, ϕ. To simplify notations we callB[xϕ] the ring
C∞(S1|1,3) of smooth functions onS1|1 with values in3 (or a suitable “version” of it, like
the space of3-valued functions onR1|1 vanishing at infinity, or even the spaceC[[x, ϕ]] ⊗3
of formal series inx, ϕ). Finally, we denote byf̄ the parity of a homogeneous elementf ,
e.g.,z̄ = x̄ = 0, θ̄ = ϕ̄ = 1.

The HSKP hierarchy is defined in terms of the super Faà di Bruno generatorĥ and the
odd derivation operatorδ := ∂ϕ + ϕ∂x taking the place of∂x . The generator̂h is an odd
formal Laurent series inz andθ with coefficients inB[xϕ] of the form

ĥ(z, θ; x, ϕ) := ν(z; x)+ θ a(z; x)+ ϕ h(z; x)+ (θϕ)ψ(z; x), (2.7)

We specify exactly the content of the componentsν, a, h andψ , by analogy with the KP
formalism, requiring that:
1. All equations are homogeneous with respect to the grading specified by

[θ ] = 1
2, [z] = 1, [ϕ] = −1

2, [x] = −1, [ĥ] = [δ] = 1
2, [tj ] = 1

2j,

and no field of negative weight enters the theory.
2. It is possible to identify the second timet2 with x. 1

3. There exists suitable “super current densities”Ĥ (k), with asymptotic behavior

Ĥ (2j+p) ∼ zj θp + O

(
1

z

)
, j ∈ N, p ∈ {0,1}.

It turns out that these requirements can be satisfied if the following simple and convenient
choices are made:
1. a is holomorphic inz−1 with constant and invertible zeroth-order coefficient (which we

assume to be equal to 1):a(z; x) := 1 +∑
j>0 aj (x)z

−j .
2. h has the usual formh(z; x) := z+∑

j>0 hj (x)z
−j .

3. ν andψ are of the form

ν(z; x) :=
∑
j>0

νj (x)z
−j , ψ(z; x) :=

∑
j>0

ψj (x)z
−j .

With the super Faà di Bruno generatorĥ we associate (fork ∈ N) its iterates

ĥ(k+1) := (δ + ĥ) · ĥ(k), ĥ(0) := 1.

1 The relation oft1 with ϕ will be, however, much subtler. We will discuss it in Section 2.3.
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The following lemma shows that the even Faà di Bruno iterates, apart from their nilpotent
components, are essentially the usual Faà di Bruno monomials.

Lemma 2.1. Let f̂ := δ(ĥ) = h− θψ + ϕνx − (θϕ)ax . Then, for anyk ∈ N
ĥ(2k+2) = (∂x + f̂ ) · ĥ(2k) = (∂x + f̂ )k+1 · 1,

ĥ(2k+3) = (∂x + f̂ ) · ĥ(2k+1) = (∂x + f̂ )k+1 · ĥ. (2.8)

Proof. We have

(δ + ĥ)2 = δ2 + δ(ĥ)− ĥδ + ĥδ + ĥ2 = δ2 + δ(ĥ) = ∂x + f̂ ,

so we get

ĥ(2k+2) = (δ + ĥ)2 · ĥ(2k) = (∂x + f̂ ) · ĥ(2k) = (δ + ĥ)2k+2 · 1 = (∂x + f̂ )k+1 · 1

and

ĥ(2k+3) = (δ + ĥ)2 · ĥ(2k+1) = (∂x + f̂ ) · ĥ(2k+1)

= (δ + ĥ)2k+2 · ĥ = (∂x + f̂ )k+1 · ĥ. �

For later use we express the Faà di Bruno iterates as

ĥ(2k) = h(k) − θψ(k) + ϕω(k) − (θϕ)b(k),

ĥ(2k−1) = ν(k) + θa(k) + ϕd(k) + (θϕ)χ(k), (2.9)

where the components are Laurent series of the form

ν(k) =
∑
j>0

ν
(k)
j zk−j−1, h(k) = zk +

∑
j>0

h
(k)
j z

k−j−1,

a(k) = zk−1 +
∑
j>0

a
(k)
j zk−j−1, ψ(k) =

∑
j>0

ψ
(k)
j zk−j−1,

d(k) = zk +
∑
j>0

d
(k)
j zk−j−1, ω(k) =

∑
j>0

ω
(k)
j zk−j−1,

χ(k) =
∑
j>0

χ
(k)
j zk−j−1, b(k) =

∑
j>0

b
(k)
j zk−j−1

and can be computed by recurrence according to the rules displayed in Table 1.
By analogy with the KP hierarchy, we introduce the space

WB[xϕ] := spanB[xϕ]
{ĥ(k), k ∈ N} (2.10)

and prove the existence of the super currents with the desired asymptotic behavior.

Proposition 2.2. Let ĥ andWB[xϕ] be defined as in Eqs.(2.7) and (2.10).There exists a

basis{Ĥ (k), k ∈ N} ofWB[xϕ] with
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Table 1

ν(k+1) = (∂x + h)ν(k), ν(1) = ν

h(k+1) = (∂x + h)h(k), h(0) = 1
a(k+1) = (∂x + h)a(k) − ψν(k), a(1) = a

ψ(k+1) = (∂x + h)ψ(k) + ψh(k), ψ(0) = 0
d(k+1) = (∂x + h)d(k) + νxν

(k), d(1) = h

ω(k+1) = (∂x + h)ω(k) + νxh
(k), ω(0) = 0

χ(k+1) = (∂x + h)χ(k) + ψd(k) + νxa
(k) − axν

(k), χ(1) = ψ

b(k+1) = (∂x + h)b(k) − ψω(k) − νxψ
(k) + axh

(k), b(0) = 0

Ĥ (2k) = zk +
∑
j>0

(Ĥ 2k
0,j (x, ϕ)z

−j + Ĥ 2k
1,j (x, ϕ)θz

−j ),

Ĥ (2k+1) = θzk +
∑
j>0

(Ĥ 2k+1
0,j (x, ϕ)z−j + Ĥ 2k+1

1,j (x, ϕ)θz−j ).

Proof. By definition ofWB[xϕ] we see that

Ĥ (0) = 1, Ĥ (1) = ĥ(1) − ϕĥ(2), Ĥ (2) = ĥ(2). (2.11)

The others can be computed recursively: suppose we have definedĤ (j) for 0 ≤ j < k; if
k = 2n is even then

Ĥ (k) = ĥ(k) −
n−1∑
j=1

(h
(n)
j + ϕω

(n)
j )Ĥ (k−2j−2) −

n−1∑
j=1

(ψ
(n)
j + ϕb

(n)
j )Ĥ (k−2j−1), (2.12)

while if k = 2n− 1 is odd then

Ĥ (k) = ĥ(k) − ϕĥ(k+1) −
n−1∑
j=1

(ν
(n)
j + ϕ(d

(n)
j − h

(n)
j ))Ĥ (k−2j−1)

−
n−1∑
j=1

(a
(n)
j + ϕ(χ

(n)
j − ψ

(n)
j ))Ĥ (k−2j). (2.13)

�
We have thus prepared all the “ingredients” needed for the following

Definition 2.3 (Hamiltonian super KP, HSKP). Let̂h be defined by (2.7), and let us com-
pute its Faà di Bruno iterateŝh(k) and the basis{Ĥ (k), k ≥ 0} of WB[xϕ] as explained in
Proposition 2.2. The HSKP hierarchy is the set of “super conservation laws”

∂tk ĥ = (−1)kδĤ (k), k > 0. (2.14)

Notice that, according to the last equality of (2.11), one hasĤ (2) = ĥ(2) = δĥ. Hence the
t2 equation of motion of HSKP is

∂t2ĥ = δĤ (2) = δ(δĥ) = ∂xĥ,

i.e., indeed,t2 can be identified withx.



248 G. Falqui et al. / Journal of Geometry and Physics 35 (2000) 239–272

2.2. The super central system

The first property to be verified is the compatibility of the evolution equation (2.14).
While checking this, we shall find that the hierarchy has some very useful properties which
allow us to describe it as producing flows on the super universal Grassmannian. This will
be accomplished by the introduction of a dynamical system tightly connected with HSKP.
Let us first work out some simple consequences of the definition of the hierarchy.

The evolution equation (2.14) is simply the super-commutativity conditions

[δ + ĥ, ∂tk + Ĥ (k)] = 0

and implies that

(∂tk + Ĥ (k)) ·WB[xϕ] ⊂ WB[xϕ] . (2.15)

Indeed,

(∂tk + Ĥ (k)) · ĥ(l) = (∂tk + Ĥ (k)) · (δ + ĥ)l · 1 = (−1)kl(δ + ĥ)l ·
(∂tk + Ĥ (k)) · 1 = (−1)kl(δ + ĥ)l · Ĥ (k),

and by definitionĤ (k) ∈ WB[xϕ] , (δ+ ĥ) ·WB[xϕ] ⊂ WB[xϕ] . In turn, this implies the “abelian
zero curvature” equation:

∂tj Ĥ
(k) = (−1)jk∂tk Ĥ

(j), (2.16)

as the following simple argument shows.
Denote byVB[xϕ] the space of Laurent series inz−1 andθ with coefficients inB[xϕ] and

by V −
B[xϕ]

its subspace of formal power series without “constant term”, i.e., starting from

z−1 andθz−1. We have the decomposition

VB[xϕ] = WB[xϕ] ⊕ V −
B[xϕ]

. (2.17)

Then, by Eq. (2.15),∂tj Ĥ
(k) is theV −

B[xϕ]
-component of−Ĥ (j)Ĥ (k), while ∂tk Ĥ

(j) is the

V −
B[xϕ]

-component of−Ĥ (k)Ĥ (j) = −(−1)jkĤ (j)Ĥ (k), thus proving Eq. (2.16). Thanks to
this property and the commutativity of the operatorsδ and∂tj , we obtain the compatibility
of the evolution equations

∂tj ∂tk ĥ = (−1)j+kδ∂tj Ĥ
(k) = (−1)jk+j+kδ∂tk Ĥ

(j) = (−1)jk∂tk ∂tj ĥ.

This result finally entails the supercommutativity of the operators∂tk + Ĥ (k),

[∂tj + Ĥ (j), ∂tk + Ĥ (k)] = 0.

We notice that it is possible to describe the theory in terms of the super-currentsĤ (k)’s
only, avoiding the introduction of the super-space variablesx and ϕ and the super-
derivativeδ which up to now played a special role. It is by doing this that the super uni-
versal Grassmannian arises. Let us first of all recall its definition [2,34,38]. Denote by
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V := 3((z−1))⊕3((z−1)) · θ the quotient ring of the ring of formal power series inz−1

andθ over2 3, and letV+ := 3[z, θ ], V− := 3[[z−1, θ ]] · z−1. V has a natural filtration

· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · ,
whereVj = zj+1V−, which makes it and its3-submoduleV+ complete topological
spaces. Then, thesuper Grassmannian SGr3 := SGr3(V, V+) is the set of closed free
3-submodulesW of V which are compatible withV+ in the sense that the restrictionπW
of the projectionπW : V → V+ to W is a Fredholm operator, i.e., its kernel (respec-
tively, cokernel) is a3-submodule (respectively, a3-quotient module) of a finite rank
free3-module. As usual [34,35],SGr3 is the disjoint union of the denumerable set of its
components labeled by the indexiW of πW .

We exploit our formulae and the concept of super universal Grassmannian by means of
the following

Definition 2.4 (SCS). LetM be the set of sequences{Ĥ (k)}k≥0 of formal Laurent series
with coefficients in3 admitting the following expansion inz:

Ĥ (2k) = zk +
∑
j>0

(Ĥ 2k
0,j z

−j + Ĥ
(2k)
1,j θz

−j ),

Ĥ (2k+1) = θzk +
∑
j>0

(Ĥ 2k+1
0,j z−j + Ĥ 2k+1

1,j θz−j )

with Ĥ (0) = 1, Ĥ (k) = kmod 2, and let

W = span3{Ĥ (k), k ≥ 0} ⊂ V.

It is not difficult to realize thatM is isomorphic to the big cell of the 0|0 component of
SGr3 (i.e., the open subset where kerπW = cokerπW = 0), an explicit isomorphism being
given by the map

{Ĥ (k)}k≥0 7→ span3{Ĥ (k), k ≥ 0}.
SCS is the dynamical system defined onM by requiring that

(∂tj + Ĥ j ) ·W ⊂ W

or, equivalently,

∂tj Ĥ
(k) = −π−(Ĥ (j)Ĥ (k)), (2.18)

whereπ− : V → V− is the projection ofV = V− ⊕ V+ ontoV− parallel toV+.
By comparing coefficients in the formulation (2.18) of SCS, we can explicitly write its
evolution equations (see Table 2). Notice that the SCS is to be thought of as a system of
Z2-gradedordinarydifferential equations.

2 To make contact with the previous definitions, notice thatVB[xϕ] = V ⊗3 B[xϕ] .
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Table 2
The SCS equations

∂t2k Ĥ
(2j) = Ĥ (2j+2k) − Ĥ (2k)Ĥ (2j) +∑j

l=1(Ĥ
2k
0,l Ĥ

(2j−2l) + Ĥ 2k
1,l Ĥ

(2j−2l+1))+∑k
l=1(Ĥ

2j
0,l Ĥ

(2k−2l)

+ Ĥ
2j
1,l Ĥ

(2k−2l+1))

∂t2k Ĥ
(2j+1) = Ĥ (2j+2k+1) − Ĥ (2k)Ĥ (2j+1) +∑j

l=1Ĥ
2k
0,l Ĥ

(2j−2l+1) +∑k
l=1(Ĥ

2j+1
0,l Ĥ (2k−2l)

+ Ĥ
2j+1
1,l Ĥ (2k−2l+1))

∂t2k+1Ĥ
(2j) = Ĥ (2j+2k+1) − Ĥ (2k+1)Ĥ (2j) +∑k

l=1Ĥ
2j
0,l Ĥ

(2k−2l+1)+∑j

l=1(Ĥ
2k+1
0,l Ĥ (2j−2l)+Ĥ 2k+1

1,l Ĥ (2j−2l+1))

∂t2k+1Ĥ
(2j+1) = −Ĥ (2k+1)Ĥ (2j+1) +∑j

l=1Ĥ
2k+1
0,l Ĥ (2j−2l+1) −∑k

l=1Ĥ
2j+1
0,l Ĥ (2k−2l+1)

2.3. HSKP as a “reduction” of SCS

The HSKP hierarchy (2.14) can be obtained from SCS by “spatialization”. This procedure
will be used in Section 4 to produce solutions of HSKP starting from solutions of SCS. A
spatialization of a hierarchy of dynamical systemsX is a process (see, e.g., [4]) consisting
of the projection ofX onto the spacêQj of solutions of itsj th flow. More informally, it
boils down to interpret a distinguished flow parameter as a space coordinate, and allows to
interpret the dynamical system as a system of PDEs.

In the ordinary KP case, spatialization with respect to the timet1 = x simply amounts to
identify t1 with x (or better, substitutet1 = x + t1 in the solutions of CS). This procedure
yields thath(x) = H

(1)
|t1=t1+x is a solution to the KP equations.

In the super case, we want to consider the projection of SCS to the spaceQ̂2 of solutions
of its second flow, i.e., the space of orbits of∂2. Essentially, we have to considerk = 1
and interpret the first two families of equations of motion reported in Table 2 as recursive
definitions of the currents, as differential polynomials (in the space variablex = t2) of the
generatorsĤ (1) andĤ (2). With respect to the bosonic case, there is a subtlety, connected
with the relation of the first timet1 of SCS with the fermionic partnerϕ of x. Observe
that, by the definition of SCS, we have∂tj Ĥ

(k) = (−1)jk∂tk Ĥ
(j). Notice in particular that

∂1Ĥ
(1) = 0. Now, fork > 1

(−1)k(∂1 + t1∂2)Ĥ
(k) = ∂tk (Ĥ

(1) + t1Ĥ
(2)), (2.19)

suggesting that in order to get HSKP (and solutions thereof) we should putĥ = Ĥ (1) +
t1Ĥ

(2), t2 = x andt1 = ϕ. This is “almost true”, but one must pay attention to theorder in
which these identifications are performed. Indeed, pluggingk = 1 in the left-hand side of
(2.19), we get

−(∂1 + t1∂2)Ĥ
(1) = −t1∂1Ĥ

(2) 6= ∂1(Ĥ
(1) + t1Ĥ

(2)),

which is inconsistent.
The right way to proceed is the following. Starting from a solution of SCS, which depends

on the times(t1, t2, . . . ) = t , one first replaces in the currentŝH(j)(t) the timest1 with
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t1 + ϕ andt2 with x, then one defines

ĥ(x, ϕ; t) := Ĥ (1)(t1 + ϕ, x, . . . )+ ϕĤ (2)(t1 + ϕ, x, . . . ). (2.20)

Since∂1Ĥ
(k) = ∂ϕĤ

(k) for anyk, and also taking into account (2.19), now we have that
the fieldĥ(x, ϕ; t) is a solution of∂tk ĥ(x, ϕ; t) = (−1)kδĤ (k), i.e., it indeed satisfies the
HSKP hierarchy. Observe that̂H(2) = ĥ(2) = (δĥ); in fact,

ĥ(2) = δ(Ĥ (1) + ϕĤ (2)) = ∂ϕĤ
(1) + ϕ∂xĤ

(1) + ∂ϕ(ϕĤ
(2))

= ϕ∂ϕĤ
(2) + (Ĥ (2) − ϕ∂ϕĤ

(2)) = Ĥ (2).

Finally one has that(∂tj + Ĥ (j))W ⊂ W implies(δ + ĥ)WB[xϕ] ⊂ WB[xϕ] .

2.4. The connection with the JSKP of Mulase and Rabin

In this section, we will show that HSKP is equivalent to the Mulase–Rabin Jacobian
Super KP hierarchy. Although it seems conceivable from the supercommutativity of the
flows, such an identification is somewhat subtle. Our essential tool will be the introduction
of twowave or Baker–Akhiezer functions associated with HSKP.

The zero curvature condition (2.16) implies the existence of a first wave function8

satisfying

∂

∂tk
8 = Ĥ (k)8. (2.21)

Now we perform the following “trick”, whose meaning will be discussed in Remark 2.1.
We define “enhanced” currentŝH(j) by the formula:

Ĥ(j) = Ĥ (j) + (−1)j+1ϕ

∮
Ĥ (j) dz dθ. (2.22)

In words, the difference between̂H(j) andĤ (j) is (up to a sign) theθ component of the
residue inz of Ĥ (j), multiplied byϕ; in the sequel we will denote it as

Ĥ(j) − Ĥ (j) = (−1)j+1ϕ Cj .

The zero curvature condition on the currentsĤ (j) implies that the enhanced currents satisfy
the analogous condition

∂Ĥ(j)

∂tn
= (−1)j n

∂Ĥ(n)

∂tj
, (2.23)

and so guarantees the existence of an enhanced wave function9 satisfying

∂

∂tn
9 = Ĥ(n)9. (2.24)

The wave function9 is readily seen to be related to the8-wave function by the formula:

9 = 8exp

(
−ϕ

∫ tttev

tttev
0

∑
n

C2n ds2n

)
. (2.25)



252 G. Falqui et al. / Journal of Geometry and Physics 35 (2000) 239–272

We now consider the logarithmic derivative

ĥ = δ9

9
. (2.26)

It is related with the Faà di Bruno generatorĥ by

ĥ = ĥ−
∫ tttev

tttev
0

∑
n

C2n ds2n. (2.27)

Actually, sinceC2 is readily seen to beψ1, we can say that̂h is aC∗[z, θ ]-valued superfield
of the form

ĥ = θa + ν̃ + ϕh+ (θϕ)ψ, (2.28)

where now

ν̃ = ν0 +
∑
j≥1

νj

zj
with ν0x = −ψ1. (2.29)

We notice that, by a straightforward supersymmetric extension of standard properties of the
Faà di Bruno procedure, sinceĥ differs fromĥ by a zero order term inz, one can write the
Faà di Bruno iterateŝh(j) of ĥ as a linear (overB[xϕ] ) combination of the iterateŝh(j) we
have been using so far (and conversely). To grasp this fact, one simply has to notice that
Lemma 2.1 holds, irrespectively of the fact thatν0 vanishes. Sincêf ′ = δĥ = f̂ + δν0, we
have (using induction) that

(∂x + f̂ ′)
∑

αiĥ
(i) = (∂x + f̂ + δν0)

(∑
αiĥ

(i)
)

=
∑

αiĥ
(i+2) +

∑
αixĥ

(i) +
∑

(δν0αi)ĥ
(i).

Summing up, we see that we can express the enhanced currents as linear combinations of
the Faà di Bruno iterates ofĥ:

Ĥ(j) =
∑
m

0
j
m ĥ

(m).

Thanks to the obvious equalitŷhj9 = δj9, we can write Eq. (2.24) as follows:

∂tj 9 = Ĥ(j)9 =
∑
l

0
j
l ĥ

(l)9 = Bj ·9, (2.30)

whereBj is a super differential operator of orderj and of parityj mod 2.
This equation is the bridge between HSKP and JSKP. The latter is usually formulated

within the theory of super pseudo-differential operators. A discussion of such a topic is
outside the size of this paper (see, e.g., [25,29,30] for details). We need the following
lemma, whose proof is a straightforward computation.
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Lemma 2.3. Let S be a super pseudo-differential operator, with coefficients inB[xϕ] of the
form

S = 1 +
∑
j>0

(uj + ϕξj )∂
−j
x + (ηj + ϕwj )δ

−(2j−1). (2.31)

and let

e(z, θ; x, ϕ, t) = exp

ϕθ + zx+
∑
j>0

(t2j z
j + t2j−1θz

j−1)


be the vacuum wave function (in the terminology of[19] ) for JSKP. Then, if9 is a
Baker–Akhiezer function for JSKP obtained by Dressing with S the vacuum wave func-
tion e,

9 = S · e, (2.32)

its logarithmic derivativeδ9/9 is a superfield of the form(2.28), satisfying the constraint
ν0x + ψ1 = 0.

The JSKP equations can now be obtained by means of standard procedures in the theory
of integrable systems. Indeed, taking thet2j andt2j−1 derivatives of the dressing relation
(2.32), and taking also Eq. (2.30) into account, we have

∂t2j 9 = ∂t2j (S · e) = (∂t2j S) · e + S · zj e = (∂t2j S) · e + Sδ2j · e

= ((∂t2j S)S
−1 + Sδ2j S−1)S · e = ((∂t2j S)S

−1 + Sδ2j S−1) ·9 = B2j ·9,
(2.33)

∂t2j−19 = ∂t2j−1(S · e) = (∂t2j−1S) · e + S · θzj−1e

= (∂t2j−1S) · e + S(δ2j−1 − ϕδ2j ) · e

= ((∂t2j−1S)S
−1 + S(δ2j−1 − ϕδ2j )S−1) ·9 = B2j−1 ·9. (2.34)

Since(∂jS)S−1 = ((∂jS)S
−1)− is a purely pseudo-differential operator (i.e., it has no

differential part) we get

∂t2j S = −(Sδ2j S−1)−S = −(S∂jx S−1)−S,

∂t2j−1S = −(S(δ2j−1 − ϕδ2j )S−1)−S = −(S∂ϕ∂j−1
x S−1)−S,

which are the equations that Mulase and Rabin defined for JSKP.

Remark 2.1. As we have anticipated, the introduction of the enhanced currentsĤ(j) is not
a mere trick. To better understand their origin it is useful to reconsider our choices, namely
the decomposition(2.17)of the spaceVB[xϕ] of formal Laurent series with coefficients in
B[xϕ] as the direct sum of the subspace generated by the Faà di Bruno monomialsWB[xϕ]
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and the spaceV −
B[xϕ]

of formal power series without “constant term”, i.e., starting fromz−1

andθz−1. If π+ : VB[xϕ] → WB[xϕ] is the projection associated with such a decomposition,

then the currentsĤ (k) are given by the formulas

Ĥ (2j+p) = π+(zj θp), j ∈ N, p ∈ {0,1}.
Actually, associated with our geometrical datum, there is another natural choice. In-
deed, one simply notice the fact that it is possible to extend the Faà di Bruno recur-
sion relations(2.8) to negative values of the index j, and get a full Faà di Bruno basis
{ĥ(j)}j∈Z in VB[xϕ] . The asymptotics of the Faà di Bruno basis is readily seen to be

ĥ(2j) ∼ zj , ĥ(2j−1) ∼ θzj−1 + ϕzj . (2.35)

Hence we have another natural decomposition

VB[xϕ] = WB[xϕ] ⊕W−
B[xϕ]

, (2.36)

where nowW−
B[xϕ]

is the space generated by the Faà di Bruno iterates with negative index.
If we call

π ′
+ : VB[xϕ] → WB[xϕ]

the projection associated with this new decomposition, then we have that the enhanced
currents are given by

Ĥ(2j+p) = π ′
+(z

j θp), j ∈ N, p ∈ {0,1}.
Actually, it is not surprising that the connection with the usual formulation of the theory by
means of super pseudo-differential operators can be described better using the decomposi-
tion associated with the full Faà di Bruno basis, sinceδj9 = ĥ(j)9 and the projectionπ ′+ is
adapted to the projection which kills the non-differential part of a super pseudodifferential
operator.

Remark 2.2. It is actually possible to write an evolution equation of the form(2.30)for the
first wave function8 as well. Indeed, sincêh8 = δ8 andĤ (j) is a linear combination of
the Faà di Bruno iterateŝh(j) of ĥ,we can read the equation∂tj 8 = Ĥ (j)8as∂tj 8 = B ′

j8

whereB ′
j is still a super differential operator of order j and of parityj mod 2.However, we

can no more express8 as the result of the action of a generic dressing operator S on the
vacuum wave function e of Lemma2.3.Moreover, the HSKP equations are not compatible
with8 having such an expression: even ifψ1 = 0 at t0, this is no more true for the evolved
field so0 = ν0x 6= −ψ1.

Remark 2.3. As we have seen, the connection between HSKP and JSKP is (albeit in a tricky
way) a change of coordinates. The relation among the degrees of freedom(ui, wi, ξi, ηi) of
S and the degrees of freedom(ai, hi, νi, ψi) (collected in(a(z), h(z), ν(z)ψ(z)) as usual)
of ĥ is indeed the following:



G. Falqui et al. / Journal of Geometry and Physics 35 (2000) 239–272 255

ν(z)

(
1 +

∑
i>1

ui

zi

)
= −η1 +

∑
i>1

ξi − ηi+1

zi
,

a(z)

(
1 +

∑
i>1

ui − ηiν(z)

zi

)
= 1 +

∑
i>1

ui + wi

zi
,

h(z)

(
1 +

∑
i>1

ui

zi

)
= z+ u1 + η1ν(z)+

∑
i>1

ui,x + ui+1

zi
+ ν(z)

(∑
i>1

ξi − ηi+1

zi

)
,

ψ(z)

(
1 +

∑
i>1

ui

zi

)
= a(z)

(
η1 +

∑
i>1

ηi+1 − ξi

zi

)

+ν(z)
∑
i>1

wi

zi
− h(z)

∑
i>1

ηi

zi
+
∑
i>1

ηix + ξi

zi
. (2.37)

These equations give(ai, hi, νi, ψi) as differential polynomials in the(ui, wi, ξi, ηi)’s, and
can be inverted modulo quadratures (as usual in the theory of KP-like equations). As we shall
show in the next sections, there is some merit in considering such non-standard coordinates,
whose choice is suggested by the supersymmetric extension of Gel’fand–Zakharevich set
up for the KP theory.

2.5. A super KdV equation as a reduction of HSKP

We will discuss now a supersymmetric generalization of the KdV equation obtained as a
reduction of the Hamiltonian super KP hierarchy. This example will be important in giving
us one more clue to the second part of the paper. It can be shown that constraints of the
form

Ĥ (2k) = zk

are compatible with HSKP. We considerk = 2 obtaining

h2 = −1
2h

′
1 + ψ1ν1, hk = −1

2h
′
k−1 − 1

2

k−2∑
j=1

hk−j−1hj + ψ1νk−1 for k > 2,

ψ2 = −1
2ψ

′
1 + a1ψ1, ψk = −1

2ψ
′
k−1 −

k−2∑
j=1

hk−j−1ψj + ak−1ψ1 for k > 2,

ν′
2 = −1

2ν
′′
1 + a′

1ν1, ν′
k = −1

2ν
′′
k−1 −

k−2∑
j=1

hk−j−1ν
′
j + a′

1νk−1 for k > 2,

a′
2 = −1

2a
′′
1 + a1a

′
1, a′

k = −1

2
a′′
k−1 −

k−2∑
j=1

hk−j−1a
′
j + ak−1a

′
1 for k > 2. (2.38)

These equations allow us to compute recursively the coefficientshj , ψj , νj andaj for
j > 1 in terms ofh1,ψ1, ν1 anda1 by means of quadratures. In order to explicitly write the
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equations for the independent degrees of freedom we have to calculate only the coefficients
of order 1 of the super current densities. Since the relations (2.38) algebraically determine
only the derivatives of the fieldsai, νi, i ≥ 2, in general, the resulting equations will
be integro-differential ones. Fortunately enough, for the sixth time of the hierarchy the
non-local terms cancel each other, and the result is

∂6ν1 = 1
4ν

′′
1

′ − 3
2a

′
1ν

′
1 − 3h1ν

′
1,

∂6a1 = 1
4a

′′
1
′ − 3

2a
′
1

2 − 3h1a
′
1 + 6ψ1ν

′
1,

∂6h1 = 1
4h

′′
1
′ − 3h1h

′
1 − 3

2ψ1ν
′′
1 − 3

2ψ
′
1ν

′
1,

∂6ψ1 = 1
4ψ

′′
1

′ − 3
2a

′′
1ψ1 − 3

2a
′
1ψ

′
1 − 3h1ψ

′
1 − 3h′

1ψ1. (2.39)

We thus see that the evolution equations for the timet6 are a supersymmetric extension of
the KdV equation, which can be retrieved by settinga1 = ν1 = ψ1 = 0, h1 = 1

2u. We also
notice the following fact. Substitutingν = ψ = 0, h = 1

2u in the above equation (2.39) we
obtain the ordinary system of PDEs in two variablesu anda

∂ta = 1
4axxx − 3

2a
2
x − 3

2uax, ∂tu = 1
4uxxx − 3

2uux. (2.40)

One can easily notice that the submanifold defined byu = −ax + a2 + λ0 is an invari-
ant submanifold of these equations, where the first one coincides with themodifiedKdV
equation. So we see that this reduction of HSKP “contains” both KdV and mKdV. This
observation will be formalized and explained in the next sections.

3. HSKP and Darboux transformations

In general, a Darboux transformation is a way to connect two systems of differential
equations enabling to produce a solution of the second once a solution of the first has
been supplied. This technique has proved to be very effective both in the construction
of large classes of explicit solutions of soliton equations and in the understanding of the
nature of infinite dimensional integrable systems (see, e.g., [15,27]). An example of such
transformation is provided by the Miura map in the KdV theory and the modified KdV
hierarchy (mKdV) (see, e.g., [8,27] and the references quoted therein). Here we are mostly
interested in the concept of Darboux intertwiners and Darboux coverings introduced in
[22,23], where the geometrical features of the method were analyzed as follows.

Consider three vector fieldsX, Y andZ on three manifoldsM,N andP , respectively.

Definition 3.1 (Magri et al. [22]). The vector fieldY intertwinesX andZ (Fig. 1) if there
exists a pair of maps(µ : N → M,σ : N → P) such thatX = µ∗Y andZ = σ∗Y .
Moreover, ifX = Z,N is a fiber bundle onM = P , andµ : N → M is the bundle
projection, thenY is said to be aDarboux coveringof X, and the mapσ the associated
Miura map. Finally, still whenX = Z andµ : N → M is a fiber bundle, for each section
ρ : M → N of µ which is invariant underY , the compositionη = σ ◦ ρ which sendsX
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Fig. 1. The Darboux maps.

in X, and hence produces an integral curvex̃(t) of X from the integral curvex(t) of X, is
called aDarboux transformation(see Fig. 1).

The concept of Darboux covering is useful for constructing both solutions and invariant
submanifolds of the vector fieldX: if U is a chart onM with coordinatex andV ⊂ µ−1(U)

a chart onN adapted to the projectionµ and with fibered coordinates(x, a), then the local
expression of the above vector fields is

ẋ = X(x), ȧ = Y (x, a),

where the first equation is that ofX onU . Then, any integral curvex(t) of X can be lifted
to an integral curve(x(t), a(t)) of Y by solving the second equation, which is controlled
by x(t). Therefore, we get a new integral curve ofX by setting

x̃(t) = σ(x(t), a(t)).

The last equation can also be interpreted as a “symmetry (or Darboux) transformation” of
the dynamical system described byX, depending on a solution of the auxiliary system for
a, controlled byX itself, which associates̃x(t) with x(t).

The application of the formalism we have just described to KP naturally leads to the DKP
hierarchy.

Definition 3.2. Let M be the affine space of (formal) monic Laurent series inz−1 with
coefficients inC∞(S1) and of the form

h(z, x) = z+
∑
j>0

hj (x)z
−j ,

and letN be the affine space of couples(h, a), whereh is as above anda is a monic Laurent
series of the form

a(z, x) = z+
∑
j≥0

aj (x)z
−j .
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Define two mapsµ, σ : N → M by

µ(h, a) = h,

h̃ := σ(h, a) = h+ ∂xa

a
.

Finally, letH(k) andH̃ (k) be the current densities associated withh andh̃, respectively. The
DKP hierarchy is the hierarchy of evolution equations onN defined by

∂

∂tk
h = ∂xH

(k),
∂

∂tk
a = a(H̃ (k) −H(k)).

DKP is a Darboux covering, in the sense of Definition 3.1, of the KP hierarchy

∂tkh = ∂xH
(k).

Indeed, it is clear thatµ∗ maps the vector fields∂tj of DKP to those of KP. As forσ∗, we
have

∂tk

(
∂xa

a

)
= a∂x∂tk a − (∂xa)(∂tk a)

a2
= a∂x(aH̃

(k) − aH(k))− a(∂xa)(H̃
(k) −H(k))

a2

= ∂xH̃
(k) − ∂xH

(k) (3.1)

and finally,

∂tk h̃ = ∂tkh+ ∂tk

(
∂xa

a

)
= ∂xH̃

(k). (3.2)

In the papers [5,10,22,23], the following results were obtained:
1. The modified KP hierarchy of [18] is the restriction of DKP on the invariant submanifold
S0 ⊂ N defined by the simple equationa = h+ a0.

2. The DKP equations admit a remarkable family of invariant submanifolds,Sl , of whichS0

is the simplest; the images throughµ of the intersections oftwo(or more) submanifolds,
Sl1 ∩ · · · ∩ Slk is an invariant submanifold of KP, which coincide with the rational KP
reductions of Dickey and Krichever (see, e.g., [1,3,9,16]).

3. The CS can be explicitly linearized and classes of solutions can be explicitly found
by means of a Darboux intertwiner linking it with the Sato system, i.e., the coordinate
expression of the linear flows of KP on the Sato Grassmannian.

In the rest of this section we will first show that HSKP (and hence JSKP) can be seen as a
supersymmetric extension of DKP; then we will define a Darboux covering for HSKP, and
briefly discuss the analogue of the invariant submanifolds mentioned in points 1 and 2 of
the above list. The generalization of point 3 will be the subject of Section 4.

3.1. DKP as the bosonic sector of HSKP

Our first goal is to give a connection between the Jacobian super KP hierarchy and DKP.
First of all, we observe that the rolea has in DKP does not depend on the order of its



G. Falqui et al. / Journal of Geometry and Physics 35 (2000) 239–272 259

pole, since it appears in a homogeneous way in all the equations. Hence, we see that (the
reduction modulo nilpotents elements in3 of) the bosonic degrees of freedom of HSKP are
exactly the degrees of freedom of DKP: the Laurent seriesa appearing in definition (2.7)
of the super Faà di Bruno generator can be identified withz−1 times the Laurent seriesa
appearing in Definition 3.2 of DKP. It is thus tempting to conjecture a relation between the
two hierarchies. In fact, we can prove the following.

Proposition 3.1. Let ĥ andĤ (k) be, respectively, the super Faà di Bruno generator and the
currents of HSKP defined as in Section 2.1.
1. The constraintν = ψ = 0 is compatible with the even flows of the HSKP hierarchy.
2. The reduction HSKPbos of the even flows of HSKP given by settingν = ψ = 0 is

isomorphic to DKP, i.e., if̂h is a solution of HSKPbos, then(h, za) is a solution of DKP
and vice versa.

Proof.
1. Looking at the recurrence relations we introduced in Section 2.1, namely Eq. (2.9) and

Table 1, we see that, under the constraintν = ψ = 0, one has

ĥ(2k−1) = θa(k) + ϕh(k), ĥ(2k) = h(k) − (θϕ)b(k),

where the coefficients are given by the following recursion relations:

h(k+1) = (∂x + h)h(k), h(0) = 1, a(k+1) = (∂x + h)a(k), a(1) = a,

b(k+1) = (∂x + h)b(k) + (∂xa)h
(k), b(0) = 0. (3.3)

In particularĥ(0) = 1, ĥ(1) = θa + ϕh, ĥ(2) = h− θϕax . This implies that

Ĥ (2k) = H(k) − (θϕ)K(k),

whereH(k) is thekth current density of KP andK(k) is some power series inz−1 andx
of the form

K(k)(z, x) =
∑
j>0

Kk
j (x)z

−j .

The evolution equations for the even flows of HSKP are then

∂t2k ν = 0, ∂t2kψ = 0, ∂t2k a = K(k), ∂t2kh = ∂xH
(k),

showing that the constraintν = ψ = 0 is compatible with them.
2. In the proof of 1 we have also established thath evolves according to KP. We need to

understand better only the evolution ofa. We have to show thatK(k)/a + H(k) is the
kth current density of KP associated with

h̃ = h+ ∂xa

a
.

To achieve this we consider the function

Â =
(

−1

a
+ θϕ

)
,
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and perform the “gauge transformation”

ĥ(k) 7→ l̂(k) := Âĥ(k),

i.e., we consider the new vector spaceW̃ = Â ·W generated by thêl(k)’s. We remark
that the first transformed basis elements are:

l̂(0) = −1

a
+ (θϕ) · 1, l̂(1) = −θ − ϕ

h

a
,

l̂(2) = −h
a

+ (θϕ) ·
(
h+ ∂xa

a

)
= −h

a
+ (θϕ) · h̃.

Observe that sinceW is generated by the action of the operator∂x + ĥ(2) on the pair
(ĥ(0) = 1, ĥ(1) = θa + ϕh), W̃ will be generated by the action of̂A(∂x + ĥ(2))Â−1 on
the pair(l̂(0), l̂(1)). We notice that

Â(∂x + ĥ(2))Â−1 = ∂x + h+ ∂xa

a
= ∂x + h̃,

which shows that

l̂(2k) = f (k) + θϕh̃(k), l̂(2k+1) = −θh̃(k) + ϕg(k). (3.4)

Now we consider the transformed currentL̂(2k) = ÂĤ (2k). Its θϕ component is clearly
given by the sum

L̂
(2k)
θϕ = H(k) + K(k)

a
.

SinceL̂(2k) is a finite linear combination of the basis elementsl̂(j ) it follows thatL̂(2k)θϕ

is the unique combination of thẽh(k) with the asymptotics

L
(2k)
θϕ = H(k) + K(k)

a
= zk + O

(
1

z

)
.

Hence it must be equal tõH(k), so we get the desired result

K(k) = a(H(k) − H̃ (k)). �

3.2. A Darboux covering for HSKP and the super analogue of its rational reductions

In this section, we return to the full supersymmetric picture, define the Darboux trans-
formations and a D–HSKP hierarchy for the Hamiltonian super KP theory, and show how
to obtain the super analogue of Dickey’s and Krichever’s rational reductions of the KP
hierarchy.

We observe that given a Laurent seriesĥ of the usual form of Eq. (2.7), and a monic even
power series

p̂ = p + θζ + ϕξ + (θϕ)q,
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with p̄ = q̄ = 0, ζ̄ = ξ̄ = 1 and

p = 1 +
∑
j>0

pjz
−j , q =

∑
j>0

qj z
−j , ζ =

∑
j>0

ζj z
−j , ξ =

∑
j>0

ξj z
−j ,

the transformed series

k̂ = ĥ+ δp̂

p̂

is still of type (2.7).

Definition 3.3 (Darboux–Hamiltonian super KP, D–HSKP). LetN̂ be the affine space of
couples of monic formal Laurent series(ĥ, p̂), let

k̂ = ĥ+ δp̂

p̂

and letK̂(k) be thekth super current density associated tok̂. D–HSKP hierarchy is the set
of compatible evolution equations

∂tk ĥ = (−1)kδĤ (k), ∂tk p̂ = p̂(K̂(k) − Ĥ (k)).

If we let M̂ be the affine space of the monic formal Laurent seriesĥ and we define two
mapsµ̂, σ̂ : N̂ → M̂ by

µ̂(ĥ, p̂) = ĥ

and

σ̂ (ĥ, p̂) = ĥ+ δp̂

p̂
,

then

∂tk

(
δp̂

p̂

)
= (−1)k

p̂δ∂tk p̂ − (δp̂)(∂tk p̂)

p̂2

= (−1)k
p̂δ(p̂K̂(k) − p̂Ĥ (k))− p̂(δp̂)(K̂(k) − Ĥ (k))

p̂2

= (−1)kδ(K̂(k) − Ĥ (k)),

so

∂tk k̂ = ∂tk ĥ+ ∂tk

(
δp̂

p̂

)
= (−1)kδK̂(k),

i.e., D–HSKP is a Darboux covering of HSKP. In the next section, we will use this formalism
for a geometrical characterization of the analogue of the rational reductions of the KP
hierarchy.
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3.3. Super mKP and rational hierarchies

Proposition 3.2. The submanifold̂Sl of N̂ (see Definition3.3 ) characterized by

zl/2p̂ ∈ W
for l even, or by

θz(l−1)/2p̂ ∈ W
for l odd, is invariant under the flows of the D–HSKP hierarchy, where we recall that
W = spanB[xϕ]

{ĥ(j)| j ≥ 0}. Consequently, the submanifold

T̂l := µ̂(Ŝl )

of M̂ is invariant under HSKP.

Proof. We give the proof only forl = 2n even, the other proof is the same up to some ob-
vious change of signs. The condition(ĥ, p̂) ∈ Ŝl implies the existence of some coefficients
αj (x, ϕ), j = 0, . . . , l such that

znp̂ =
l∑

j=0

αj Ĥ
(j), (3.5)

so we have to show that this expression is invariant under the flows of D–HSKP, i.e.,

∂tk

zlp̂ −
l∑

j=0

αj Ĥ
(j)

 = 0 (3.6)

on Ŝ2n. LetWk̂ := spanB[xϕ]
{k̂(j)| j ≥ 0}. By definition we have

p̂(δ + k̂) = (δ + ĥ)p̂,

and hencêp(δ+ k̂)j = (δ+ ĥ)j p̂. This implies thatzlp̂W k̂ ⊂ W , and therefore, using the
D–JSKP equations,(∂tk + Ĥ (k))zlp̂ = zlp̂K̂(k) ∈ W , i.e.,

zl∂tk p̂ +
l∑

j=0

(−1)jkαj Ĥ
(k)Ĥ (j) ∈ W.

Using now the property∂tk Ĥ
(j) + Ĥ (k)Ĥ (j) ∈ W , characteristic of HSKP, and comparing

the coefficients ofzj andθzj in Eq. (3.5) forj = 0, . . . , l, we get

zl∂tk p̂ −
l∑

j=0

(−1)jkαj∂tk Ĥ
(j) =

l∑
j=0

(∂tkαj )Ĥ
(j),

i.e., (3.6) holds. �
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As a first application of this result we show how, in such a formalism, we obtain a
supersymmetric extension of the modified KP hierarchy. We consider the submanifold
Ŝ2 defined byzp̂ ∈ W . It can be seen that these equations entail the following con-
straints:

ζ1 = 0;
∫
S1
ξj dx = 0, j ≥ 2, q1 = 0, and

∫
S1
qi dx = 0 j ≥ 2. (3.7)

The bosonic sector of the resulting theory covers the invariant submanifoldS0 of the
DKP equations of [22] defined bya = h + a0. There it was proven thatDKP|S0 is an-
other form of the modified KP theory of Kupershmidt [18]. Hence, through this result,
we obtain that the restrictionD-SKP|S2

provides a direct supersymmetric extension of
mKP.

Finally, following [5], one can define and study the “rational-type reductions” of the
HSKP hierarchy as the restriction of the D–HSKP hierarchy to the intersection of suit-
able of invariant submanifolds. In the next example we will briefly describe the simplest
case.

Example 3.1. Let us consider thetriple intersectionŜ124, and its imageT̂124 underµ̂,
obtained by requiring that the triple(θp̂, zp̂, z2p̂) lie in W . Since Ĥ (1) = θa + ν,
we see that, recalling the form of̂p = p + θζ + ϕξ + (θϕ)q, the equationθp̂ ∈ W

implies

ν = 0, ξ = 0, a = p.

Intersecting withŜ2 we get

h = zp− p1, ψ = −zζ + ζ1p, q = q1p − px

z
.

Finally, requiringz2p̂ ∈ W one sees that it is possible to express all the fieldspi, qi, ζi ,
(and hence all the currentŝH(j)) in terms of the two even fieldsr = p1, s = p2 and the
two odd fieldsρ = ζ1, σ = ζ2. Indeed the equations to be solved are

z2(p2 − p)+ z(px − p1p) = p1,x + p2,

z2(2pζ − ζ )+ z(ζx − ζ1p
2 − p1ζ ) = ζ1p + ζ2 + p1pζ,

q1(z(p
2 − p)+ px − p1p) = z(2ppx − px)+ pxx − p1xp − p1px.

From the first one we get

pk+2 = −pk+1x −
k∑
j=1

pjpk−j+2, k ≥ 1,

and from the second a similar formula expressingζj+2, j ≥ 1 in terms ofζ1, ζ2 and the
pk ’s. Plugging the first equation into the third one, we finally get

q1 = d

dx
log(p2 + p1x).
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The resulting equations of motion relative to the timet4 are the following:

ṙ = (rx + 2s − r2)x, ṡ = −(sx + rs)x,

ρ̇ = ρxx + 2σx − 2rρx − 2rxρ + 2(log(rx + s))x(ρx + σ − rρ),

σ̇ = −σxx + 2rρxx − 2(r2 + s)ρx − 2rxσ + 2r(log(rx + s))x(ρx + σ − rρ). (3.8)

We notice that these evolution equations forr ands coincide with those of the realization of
the well-known AKNS (or two-boson) hierarchy as a rational reduction of the KP hierarchy
[5,16].

4. Linearization

The evolution equations of SCS we have introduced in Section 2.2 are not linear, and
not directly linearizable. To obtain their “linearized version”, allowing to provide explicit
solutions, we can exploit Darboux covering techniques as it has been done in [10] for KP.
The idea is to find a Darboux covering which intertwines the SCS defined in Section 2.1
with a new hierarchy whose linearization can be achieved by elementary methods.

To this end, letM̂ be the space of sequences of Laurent series{Ŷ (k)}k≥0 of the form

Ŷ (2k) = zk +
∑
j>0

(Ŷ 2k
0,j z

−j + Ŷ 2k
1,j θz

−j ),

Ŷ (2k+1) = θzk +
∑
j>0

(Ŷ 2k+1
0,j z−j + Ŷ 2k+1

1,j θz−j ),

whereŶ (k) = kmod 2. The manifoldP̂ of Definition 3.1 is just a copy ofM̂ formed by
the sequences{Ĥ (k)}k≥0. Finally, the manifoldN̂ is the Cartesian product̂M × Ĝ of M̂
by the group of even invertible formal power seriesŵ of the form

ŵ = 1 +
∑
j>0

(ŵ0,j z
−j + ŵ1,j θz

−j ).

The next step is to define suitable vector fieldsX̂ , Ŷ andẐ onM̂, N̂ andP̂, respectively.
The vector fieldẐ is any vector field of SCS, which is completely characterized by

(∂tk + Ĥ (k)) ·W ⊂ W.

The flow can be identified by using an index, so we call this vector fieldẐk. To defineX̂

we introduce the subspaceW(Ŷ ) of V spanned by thêY (j)’s. Then, ifk = 2n is even we let
X̂k be the vector field characterized by the property

(∂tk + zn) ·W(Ŷ ) ⊂ W(Ŷ ),

while if k = 2n+ 1 we letX̂k be the vector field characterized by

(∂tk + θzn) ·W(Ŷ ) ⊂ W(Ŷ ).
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As for SCS, we can write down the equations definingX̂k by comparing coefficients: if
k = 2n

∂tk Ŷ
(j) + znŶ (j) = Ŷ (j+2n) +

n∑
l=1

(Ŷ
j

0,l Ŷ
(2n−2l) + Ŷ

j

1,l Ŷ
(2n−2l+1)),

while if k = 2n+ 1

∂tk Ŷ
(2j) + θznŶ (2j) = Ŷ (2j+2n+1) +

n∑
l=1

Ŷ
2j
0,l Ŷ

(2n−2l+1),

∂tk Ŷ
(2j+1) + θznŶ (2j+1) = −

n∑
l=1

Ŷ
2j+1
0,l Ŷ (2n−2l+1).

The definition ofŶk is obtained by imposing the further condition

(∂tk + zn) · ŵ ∈ W(Ŷ ) if k = 2n, (∂tk + θzn) · ŵ ∈ W(Ŷ ) if k = 2n+ 1.

As in [10], we give the following.

Definition 4.1. We callsuper Sato System(SS) the family of vector fields{X̂k}k>0 onM̂
andsuper Darboux–Sato System(SDS) the family of vector fields{Ŷk}k>0 on N̂ .

The next step is to define the mapsµ̂ : N̂ → M̂ andσ̂ : N̂ → P̂. The first is as usual
the projection

({Ŷ (k)}k≥0, ŵ) 7→ {Ŷ (k)}k≥0,

while the second is defined by imposing the intertwining condition

ŵ ·W = W(Ŷ ),

which holds if and only if

ŵĤ (2j) = Ŷ (2j) +
j∑
l=1

(ŵ0,l Ŷ
(2j−2l) + ŵ1,l Ŷ

(2j−2l+1)),

ŵĤ (2j+1) = Ŷ (2j+1) +
j∑
l=1

ŵ0,l Ŷ
(2j−2l+1).

Lemma 4.1. The SDS system is a Darboux intertwiner of SS with SCS.

Proof. We need only to prove that̂σ∗(SDS) = SCS. This follows by observing that the
definitions of SDS and̂σ imply

∂t2k ŵ + zkŵ = ŵĤ (2k), ∂t2k+1ŵ + θzkŵ = Ĥ (2k+1),
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so

ŵ · (∂t2k + Ĥ (2k)) = (∂t2k + zk) · ŵ, ŵ · (∂t2k+1 + Ĥ (2k+1)) = (∂t2k + θzk) · ŵ.
Hence, we get

ŵ · (∂t2k + Ĥ (2k)) ·W = (∂t2k + zk) · ŵW = (∂t2k + zk) ·W(Ŷ ) ⊂ W(Ŷ )

and

ŵ · (∂t2k+1 + Ĥ (2k+1)) ·W = (∂t2k+1 + θzk) · ŵW = (∂t2k+1 + θzk) ·W(Ŷ ) ⊂ W(Ŷ ),

showing that(∂tk + Ĥ (k)) ·W ⊂ W , i.e., the SCS. �

We consider now the map̂ρ : M̂→ N̂ defined by

{Ŷ (k)}k≥0 7→ ({Ŷ (k)}k≥0, Ŷ
(0))

and the corresponding mapσ̂ ◦ ρ̂ : M̂→ P̂.

Lemma 4.2. The submanifold̂ρ(M̂) of N̂ is a section of̂µ invariant under SDS.

Proof. The previous definitions imply

∂2j (ŵ − Ŷ (0))=−zj (ŵ−Ŷ (0))+
j∑
l=1

((ŵ0,l−Ŷ 0
0,l)Ŷ

(2j−2l)+(ŵ1,l − Ŷ 0
1,l)Ŷ

(2j−2l+1)),

∂2j+1(ŵ − Ŷ (0)) = −θzj (ŵ − Ŷ (0))+
j∑
l=1

(ŵ0,l − Ŷ 0
0,l))Ŷ

(2j−2l+1)

proving the lemma. �

We have to linearize now the super Sato system. To achieve the result it is better to
introduce the infinite even matrixY defined by

Yjk :=
 Ŷ

j

0,(k+2)/2 for k even,

Ŷ
j

1,(k+1)/2 for k odd,

wherej, k ≥ 0, and the associated matrixỸ whose entries are

Ỹjk := (−1)ȲjkYjk = (−1)j+kYjk.

An easy computation shows that the flows of the SS hierarchy translate into the following
Riccati type evolution equations:

∂2nY + Y3tn
2 −3n2Y = Y02nY, ∂2n+1Y + Ỹ313

tn
2 −313

n
2Y = Ỹ02n+1Y,

(4.1)
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where t means ordinary transposition (not super transposition),31 is the odd shift matrix
with entries

(31)jk := 1 − (−1)k

2
δk,j+1,

32 is the even shift matrix with entries

(32)jk := δk,j+2,

02n is the even convolution matrix defined by

(02n)jk := 1 − (−1)k

2
δk,2n−j + 1 − (−1)k+1

2
δk,2n−j−2

and finally02n+1 is the odd convolution matrix given by

(02n+1)jk := 1 − (−1)k

2
δk,2n−j−1.

Observe that these matrices satisfy the relations

[31,31] = [31,32] = [31,3
t
2] = 0,

3t
20n = 0n32, 3102n = 02n31, and 3102n+1 = 02n+131 = 0,

which imply the compatibility of the above system of matrix Riccati equations.

Proposition 4.3. The infinite even matrixY is a solution of(4.1)if and only if it has the form
Y = V · U−1, whereU andV are infinite even matrices satisfying the constant coefficients
linear system

∂2nU =3tn
2 U − 02nV, ∂2n+1U = 313

tn
2 U − 02n+1V,

∂2nV =3n2V, ∂2n+1V = 313
n
2V

with, of course, U invertible.

Proof. The proof is exactly the same as in the commutative case, once we have observed
that for two matricesU andV the following relations hold:

∂t2k (UV)= (∂t2kU)V + U(∂t2kV), ∂t2k+1(UV) = (∂t2k+1U)V + Ũ(∂t2k+1V),

ŨV = ŨṼ ⇒ Ũ−1 = Ũ−1.

Thus, if U and V solve the system of linear equations of the statement and if we let
Y = VU−1, then

∂2nY = (∂2nV)U−1 − VU−1(∂2nU)U−1 = 3n2VU−1 − VU−13tn
2 + VU−102nVU−1

= −Y3tn
2 +3n2Y + Y02nY,
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∂2n+1Y = (∂2n+1V)U−1 − ṼŨ−1(∂2n+1U)U−1

=313
n
2VU−1 − ṼŨ−1313

tn
2 + ṼŨ−102n+1VU−1

= −Ỹ313
tn
2 +313

n
2Y + Ỹ02nY.

Therefore, if we look for a solutionY of the Riccati matrix equations of SS with initial
conditionY(0) = Y0, we have to simply solve the linear system above imposing the initial
conditionsV(0) = Y0 andU(0) = I. As we already noticed, the necessary condition

02n+131 = 0

for the integrability of the linear system holds. �

Of course, the computations given in the proposition are only formal: to make sense of
them one should also introduce a suitable notion of convergence for the intervening series
in infinite variables. However, notice that the constraint “Yjk = 0 when eitherj ≥ J or
k ≥ K” is compatible with the evolution equations forY, allowing us to consider reductions,
where only the finite submatrixYJK of Y consisting of its firstJ rows andK columns does
not vanish. Obviously,YJK evolves according to the reduced Riccati equations

∂2nYJK + YJK3
tn
2,KK −3n2,JJYJK = YJK02n,KJYJK,

∂2n+1YJK + ỸJK(313
tn
2 )KK −31,JJ3

n
2,JJYJK = ỸJK02n+1,KJYJK.

This is a closed system of (graded) ordinary differential equations in a finite number of
variables. It yields “finite type” solutions (i.e., depending only on finitely many times) of
SS and hence of SCS and HSKP. Observe that the compatibility of the reduced system
requiresK to be even; in this case(313

tn
2 )KK = 31,KK3

tn
2,KK.

4.1. An explicit example

To show an example, we compute the solution of SS associated toJ = 3 andK = 4. To
simplify notations let us callY := Y34,

A1 :=31,33 =
 0 1 0

0 0 0
0 0 0

 , A2 := 32,33 =
 0 0 1

0 0 0
0 0 0

 ,

B1 :=31,44 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B2 := 3t
2,44 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,
andCk := 0k,43. The relevant (i.e., different from zero) convolution matrices are
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C2 :=


1 0 0
0 1 0
0 0 0
0 0 0

 , C3 :=


0 1 0
0 0 0
0 0 0
0 0 0

 , C4 :=


0 0 1
0 0 0
1 0 0
0 1 0

 ,

C5 :=


0 0 0
0 0 0
0 1 0
0 0 0

 , C6 :=


0 0 0
0 0 0
0 0 1
0 0 0

 .
We see thatA2

2 = 0 andB2
2 = 0, so the solution of SS (or SCS) will depend only on the

first six times. We solve the Riccati system forY by introducing the 4× 4 matrixU and the
3 × 4 matrixV which are solutions of the following linear Cauchy problems:

∂t2kV =Ak2V, ∂t2k+1V = A1A
k
2V, V (0) = Y (0),

∂t2kU =Bk2U − C2kV , ∂t2k+1U = B1B
k
2U − C2k+1V, U(0) = I,

and then puttingY := VU−1. First of all we find that

V = exp
∑
j>0

(t2jA
j

2 + t2j−1A1A
j−1
2 )V (0) =

 1 t1 t2

0 1 0
0 0 1

Y (0).
Then we solve the system forU by introducing the matrixU0 defined by

U = exp
∑
j>0

(t2jB
j

2 + t2j−1B1B
j−1
2 )U0 = (I+ t1B1 + t2B2 + (t3 + t1t2)B1B2)U0

and evolving as

∂t2kU0 = −(I− t1B1 − t2B2 − (t3 − t1t2)B1B2)C2kV ,

∂t2k+1U0 = −(I+ t1B1 − t2B2 + (t3 − t1t2)B1B2)C2k+1V.

The equations forU0 are easily solvable and we get

U0 = I−


t2 t3 t4 + 1

2t
2
2

0 t2 0

t4 − 1
2t

2
2 t5 − t2t3 t6 − 1

3t
3
2

0 t4 − 1
2t

2
2 0

Y (0).

In order to write down an effective solution, we choose simple initial conditions, e.g.,

Y (0) =
 0 0 0 0

0 0 0 0
0 0 1 0

 .
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Then

V =
 0 0 t2 0

0 0 0 0
0 0 1 0

 ,

U =


1 t1 −t4 − 1

2t
2
2 0

0 1 0 0
t2 t3 + t1t2 1 − t6 − t2t4 − 1

6t
3
2 t1

0 t2 0 1

 .
Finally, we find

Ŷ (0) = 1 − 3t22
τ
z−1 + 3t2(t1t2 − t3)

τ
θz−1 + 3t2

τ
z−2 − 3t1t2

τ
θz−2, Ŷ (1) = θ,

Ŷ (2) = z− 3t2
τ
z−1 + 3(t1t2 − t3)

τ
θz−1 + 3

τ
z−2 − 3t1

τ
θz−2,

Ŷ (2k) = zk for k > 1, Ŷ (2k+1) = θzk for k > 0,

whereτ = 3 + t32 − 3t6. We can thus compute the first super currents of SCS

Ĥ (1) = θ +
∑
k>0

(
3t22
τ
z−1 + 3t2

τ
z−2

)k
θ,

Ĥ (2) = z− 3t22
τ

+ 3
∑
k≥0

(
3t22
τ
z−1 − 3t2

τ
z−2

)k

×
(
t22

τ
− 2t2

τ
z−1 + 2t1t2 − t3

τ
θz−1 + 1

τ
z−2 − t1

τ
θz−2

)
.

As explained in Section 2.2, we obtain a solution of HSKP after substitutingt2 and t1
with x andϕ + t1, respectively and puttinĝh = Ĥ (1) + ϕĤ (2):

ν = 0, a = 1 +
∑
k>0

(
3x2

τ
z−1 − 3x

τ
z−2

)k
,

h= z− 6x

τ
z−1 + 3

τ
z−2 + 3

∑
k>0

(
3x2

τ
z−1 − 3x

τ
z−2

)k (
x2

τ
− 2x

τ
z−1 + 1

τ
z−2

)
,

ψ = 3
∑
k≥0

(
3x2

τ
z−1 − 3x

τ
z−2

)k (
2t1x − t3

τ
z−1 − t1

τ
z−2

)
.
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